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Abstract
In part I (Kanemitsu S et al 2003 J. Northwest University) we have made explicit
use of the Mellin–Barnes integrals to prove the Chowla–Selberg-type Bessel
series expressions for zeta-functions associated with lattice structures. In this
paper we shall make implicit use of Mellin–Barnes integrals, as embedded in
our theory of modular relations and functional equations, to reveal relationships
between the structure of Madelung constants of the NaCl and CsCl lattices.
Namely, we shall elucidate the relation between the structures of the NaCl
lattice and those of the CsCl lattice, so to speak using the symmetry of the
zeta-function, i.e. using their functional equations. Thus we shall emphasize
the symmetry properties of the zeta-functions, restoring the Schlömilch series
and Hardy’s theory of K-Bessel functions, to prove the functional equations,
and then to prove the recurrence relations for the lattice zeta-functions.

PACS numbers: 0210De, 0230Gp, 0550.+q
Mathematics Subject Classification: 11M35, 11M06

Dedicated to Professor Kiyoshi Kikukawa on his sixtieth birthday

1. Introduction

The Madelung constant α3(NaCl) for the (three-dimensional) NaCl crystal lattice is given by
(−1) times the special value of the associated lattice zeta-function at s = 1

2

ϕ3(s) =
∑
m∈Z3

′ (−1)s(m)

|m|2s
σ = Re s >

3

2

where m = (m1,m2,m3) runs through all integer triples, the prime on the summation sign
indicates that not all the entries of m are zero, s(m) signifies the sum m1 + m2 + m3, and

|m| =
√

m2
1 + m2

2 + m2
3 gives the length of m (cf, e.g., [2, 3, 9, 21]).
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In part I [15], we have given Bessel series expressions for the lattice sum zeta-functions
generalizing those for CsCl structures as well as NaCl structures above, in a similar form as
given by earlier authors [11]. The method used is a successful application of the Mellin–
Barnes integrals, the analytic equivalent of the binomial theorem. This method was revived by
recent applications of many Japanese number theorists in the mean square problems (cf [18]),
but prior to this, Hardy [10] had already used it in his study of series and integrals involving
binary quadratic forms, to which we shall make a contribution here. Then Koshlyakov [17]
used it in the study of quadratic fields, and Berndt [1] made a very successful use of it to
complete the theory of the Epstein zeta-function [19, 20].

In this paper we shall prove a recurrence formula for the κ-dimensional NaCl lattice
zeta-function

ϕκ(s) =
∑
m∈Z

κ

′ (−1)s(m)

E(m)s
σ >

κ

2
(1.1)

where as above

E(m) = m2
1 + · · · + m2

κ s(m) = m1 + · · · + mκ (1.2)

with a generalized Dirichlet series admitting a Bessel series expression. From this we may
inductively deduce a Bessel series expression for ϕκ(s) itself. Since the main interest is in the
case of ϕ3(s), the recurrence formula, containing ϕ2(s) and ϕ1(s), gives an immediate means
for rapid calculation of the Madelung constant.

The method of proof is slightly different from that in part I, in that although we still use
Mellin–Barnes integrals, we use them in an implicit form embodied in our theory of modular
relations (and functional equations) [13, 14].

Let Q = (ajk)j,k be a positive definite matrix of degree κ and Q(x) = Q(x1, . . . , xκ) =∑κ
j=1

∑κ
k=1 ajkxjxk denote the corresponding positive definite quadratic form. For γ =

(γ1, . . . , γκ), δ = (δ1, . . . , δκ) let Z
∣∣γ
δ

∣∣∣(s)Q = Z
∣∣∣γ1, . . . , γκ

δ1, . . . , δκ

∣∣∣(s)Q denote the associated Epstein

zeta-function defined by

Z

∣∣∣∣γδ
∣∣∣∣ (s)Q = Z

∣∣∣∣γ1, . . . , γκ

δ1, . . . , δκ

∣∣∣∣ (s)Q =
∑
m∈Z

κ

Q(m+γ )�=0

e2π im·δ

Q(m + γ )s/2
(1.3)

where m = (m1, . . . , mκ) ∈ Zκ and m · δ signifies the inner product m1δ1 + · · · + mκδκ .

The Epstein zeta-function Z
∣∣γ
δ

∣∣∣(s)Q satisfies the functional equation

π− s
2 �

( s

2

)
Z

∣∣∣∣γδ
∣∣∣∣ (s)Q = e−2π iγ ·δ

√
det Q

π− κ−s
2 �

(
κ − s

2

)
Z

∣∣∣∣ δ

−γ

∣∣∣∣ (κ − s)Q−1 (1.4)

where Q−1 is the reciprocal form of Q (cf [7]).

Our ϕκ(s) is a special case of Z
∣∣γ
δ

∣∣∣(s)Q with γ = 0, δ = 1/2 = (
1
2 , . . . , 1

2

)
,

Q(x) = |x|2 = x2
1 + · · · + x2

κ and s replaced by 2s

ϕκ(s) = Z

∣∣∣∣ 0
1/2

∣∣∣∣ (2s)E (1.5)

whose functional equation assumes the form

π−s�(s)ϕκ(s) = π−( κ
2 −s)�

(κ

2
− s

)
ψκ

(κ

2
− s

)
(1.6)
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where

ψκ(s) = Z

∣∣∣∣1/2
0

∣∣∣∣ (2s)E =
∑
m∈Z

κ

1

|m + 1/2|2s
. (1.7)

For the CsCl crystal lattice with Cs+ at the origin, the Madelung constant is given as the
special value of the associated lattice zeta-function at s = 1/2

−
(

3

4

)s

ξ3(s) =
(

3

4

)s

Z

∣∣∣∣ 1
2

1
2

1
2

0 0 0

∣∣∣∣ (2s)E −
(

3

4

)s

Z

∣∣∣∣0 0 0
0 0 0

∣∣∣∣ (2s)E (1.8)

where we note that Z
∣∣ 1

2
1
2

1
2

0 0 0

∣∣∣(2s)E occurring in the first term on the right-hand side of (1.8)

is exactly the Dirichlet series ψ3(s) in (1.7) which appears in the functional equation (1.6)
(cf section 3), and where

−
(

3

4

)s

ξ3(s) = −3sZ

∣∣∣∣ 0
1/2

∣∣∣∣ (2s)Q with Q =

 3 −1 −1

−1 3 −1
−1 −1 3


 .

A consequence of relation (1.8) and its counterpart

Z

∣∣∣∣ 0
1/2

∣∣∣∣ (1)Q = 1

2π

{
Z

∣∣∣∣00
∣∣∣∣ (2)E − Z

∣∣∣∣ 0
1/2

∣∣∣∣ (2)E

}

Z

∣∣∣∣ 0
1/2

∣∣∣∣ (1)E = 2

π

{
Z

∣∣∣∣00
∣∣∣∣ (2)Q − Z

∣∣∣∣ 0
1/2

∣∣∣∣ (2)Q

}
shows the duality between NaCl and CsCl lattices (one is a dual of a sublattice of the other).
A more thorough study of this and more will be conducted elsewhere.

In this paper we shall dwell on the effective use of the functional equation and its
equivalents satisfied by the lattice zeta-function in question, first because these are lacking
in most research by scholars of physical-chemical disciplines, except for Zucker [24] who
derives the functional equations for

∑ 1
(m2+n2)s

, and secondly because it gives a clear picture
of the duality of the lattice structure of NaCl and CsCl, and for other possible dual crystals.

Thus, in section 2.1 we shall first use Hautot’s idea of using Schlömilch series to yield the
Bessel series expression for Z(s) = ∑′

m,n
1

(m2+dn2)s
whence we deduce the functional equation

for it. This Bessel series expansion is due to Chowla and Selberg [6, 19] and might be named
after them, though the Chowla–Selberg formula usually refers to another formula.

Then we go to section 2.2 where we shall study Hardy’s long-forgotten paper [10] and
deduce the functional equation for the Epstein zeta-function ζQ(s) = ∑′

m,n
1

Q(m,n)s
, where

Q = Q(m, n) = am2 + bmn + cn2 denotes a positive definite (binary) quadratic form, by
completing his proof (Hardy confessed that he could not deduce the functional equation).

In section 3 we shall prove a recurrence formula for the κ-dimensional NaCl crystal
zeta-function ϕκ(s) and for the CsCl zeta-function ψκ(s) referred to above, with a generalized
Dirichlet series admitting the Bessel series expression.

We use the following standard notation. In the following s = σ + it denotes a complex
variable.

�(s) denotes the gamma function defined by

�(s) =
∫ ∞

0
e−uus−1 du σ > 0.

We introduce two basic Dirichlet series ζ(s), β(s),

ζ(s) =
∞∑

n=1

1

ns
σ > 1
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which is called the Riemann zeta-function, while

β(s) =
∞∑

n=1

(−1)n−1

(2n − 1)s

is identical with one of Dirichlet’s L-functions

β(s) = L(s, χ4) =
∞∑

n=1

χ4(n)

ns

where χ4(n) is defined to be 1,−1 or 0 according as n ≡ 1 (mod 4), n ≡ −1 (mod 4) or
n ≡ 0 (mod 2), respectively.

We use the standard Bessel functions

Jν(z) =
∞∑

n=0

(−1)n

n!�(ν + n + 1)

( z

2

)ν+2n

(1.9)

denoting the ordinary Bessel function of the first kind, which is used in connection with
Schlömilch series in section 2.1. Kν(z) denotes the modified Bessel function defined either
by

Kν(z) = 1

2

∫ ∞

0
exp

(
−1

2
z(u + u−1)

)
u−ν−1 du (1.10)

or by

Kν(z) = π

2

I−ν(z) − Iν(z)

sin πν
(1.11)

(the limit is to be taken for ν ∈ Z) with Iν(z) denoting the Bessel function

Iν(z) =
∞∑

n=0

1

n!�(ν + n + 1)

( z

2

)ν+2n

.

Kν is used in the context of the inverse Heaviside integral (in (2.9))

1

2π i

∫
(c)

�
(
s +

µ + ν

2

)
�

(
s +

µ − ν

2

)
x−s ds = 2xµ/2Kν(2

√
x) (1.12)

valid for c + Re µ+ν

2 � Re ν > 0, where
∫
(c)

denotes the vertical integral σ = c,−∞ < t < ∞.
In section 3 we use the following Mellin–Barnes integral:

�(s)(1 + λ)−s = 1

2π i

∫
(c)

�(s + z)�(−z)λz dz (1.13)

which holds under the condition | arg λ| < π,−Re s < c < 0.
We also need the following well-known formulae:

Kn+ 1
2
(x) =

√
π

2x
e−x

n∑
r=0

(n + r)!

r!(n − r)!(2x)r
(n ∈ N ∪ {0}) (1.14)

Kν(x) ∼
√

π

2x
e−x

∞∑
r=0

�
(
ν + r + 1

2

)
�
(
ν − r + 1

2

)
r!(2x)r

(
| arg x| <

3π

2

)

= O(x− 1
2 e−x) as x → ∞. (1.15)

In the following
∑

n∈N means the summation over n = 1, 2, . . . ,
∑

m∈Z or
∑

m,n etc
means the summation over all integers, and the prime on the summation means that some
terms are omitted which give rise to singularities of summands.
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2. Bessel series for Epstein zeta-functions

2.1. Bessel series for
∑′

m,n
1

(m2+dn2)s
via Schlömilch series

We shall prove the following Chowla–Selberg-type identity, the formula itself was known to
Kober [16, p 620, (5a)].

Theorem 1. The zeta-function

Z(s) = Z(s, d) =
∑
m,n

′ 1

(m2 + dn2)s
(d > 0)

admits the Bessel series expression

Z(s) = 2ζ(2s) +
2
√

π

ds− 1
2

�
(
s − 1

2

)
�(s)

ζ(2s − 1) +
8πs

d
s
2 − 1

4 �(s)

∞∑
n=1

ns− 1
2 σ1−2s(n)Ks− 1

2
(2π

√
dn)

(2.1)

where σa(n) = ∑
d|n da denotes the sum of ath powers of divisors of n.

For the proof we use the following results on Schlömilch series.

Lemma 1.
(i) [22, p 386] For Re s > 0, Re (a ± ib) > 0, we have

(a2 + b2)−s = 21−2s
√

π

�(s)

∫ ∞

0
x2s−1 e−ax

Js− 1
2
(bx)

(bx/2)s−1/2
dx.

(ii) (Schlömilch series, cf [11]). The Schlömilch series

gs(x) = 1

2�(s + 1)
+

∞∑
m=1

Js(mx)

(mx/2)s
= 1

2

∞∑
m=−∞

Js(mx)

(mx/2)s

can be computed to be

gs(x) =




√
π

x�
(
s + 1

2

) for 0 < x < 2π

√
π

x�
(
s + 1

2

) +
2
√

π

x�(s + 1
2 )

q∑
n=1

(
1 −

(
2πn

x

)2
)s− 1

2

for 2qπ < x < 2(q + 1)π.

(iii) The integral transform

Qs(b) =
∫ ∞

0
e−bxx2sgs(x) dx Re s > 0 Re b > 0

has the expansion

Qs(b) = 22s−1b−2s�(s) + 2

(
2π

b

)s ∞∑
l=1

(2l)sKs(2πbl).

Proof of theorem 1. We separate the part with n = 0 from the sum to get

Z(s) = 2ζ(2s) +
∞∑

n=−∞

′ ∞∑
m=−∞

(dn2 + m2)
−s

.

We use lemma 1 (i) with a = √
d|n|, b = m and sum them for m, n ∈ Z for σ > 1. Then

Z(s) = 2ζ(2s) +
21−2s

√
π

�(s)

∞∑
n=−∞

′ ∫ ∞

0
x2s−1 e−√

d|n|x
∞∑

m=−∞

Js− 1
2
(mx)

(mx/2)s−
1
2

dx (2.2)
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where the inversion of order of the infinite sum and integration is justified by absolute
convergence.

Since the innermost sum on the right-hand side is a Schlömilch series 2gs(x), the integral
in (2.2) can be evaluated in view of lemma 1(ii) in terms of Bessel series.

We record the process of transformations for the sake of completeness,

Z(s) = 2ζ(2s) +
22−2s

√
π

�(s)

∞∑
n=−∞

′ ∫ ∞

0
exp(−

√
d|n|x)x2(s− 1

2 )gs− 1
2
(x) dx

= 2ζ(2s) +
22−2s

√
π

�(s)

∞∑
n=−∞

′
Qs− 1

2
(
√

d|n|)

= 2ζ(2s) +

√
π

�(s)

∞∑
n=−∞

′
(
√

d|n|)−2(s− 1
2 )�

(
s − 1

2

)

+
4πs

d
1
2 (s− 1

2 )�(s)

∞∑
n=−∞

′ ∞∑
l=1

(
l

|n|
)s− 1

2

Ks− 1
2
(2π

√
d|n|l)

whence (2.1) follows on writing ln = m and introducing the σ -function. This completes the
proof. �

Remark. As was pointed out by Chowla and Selberg ([19, section 5]), the Bessel series
expression for Z(s) implies its functional equation(

π√
d

)−s

�(s)Z(s) =
(

π√
d

)−(1−s)

�(1 − s)Z(1 − s). (2.3)

This Hecke-type functional equation is the one which is satisfied by the Epstein zeta-
function ζQ(s) associated with a positive definite (binary) quadratic form Q = Q(m, n) =
am2 + 2bmn + cn2:

π−s�(s)ζQ(s) = |d|− 1
2 π−(1−s)�(1 − s)ζQ−1(1 − s) (2.4)

where d = b2 − ac < 0 denotes the discriminant and Q−1 denotes the reciprocal of Q given
by

Q−1(m, n) = 1

|d| (cm
2 − 2bmn + an2). (2.5)

The functional equation for the zeta-function (1.4) of a positive definite quadratic form
in κ variables was first proved by Epstein [7] by using the ϑ-transformation formula (or in
other words, the Poisson summation formula in k dimensions.) Zucker [24] used similar
methods to deduce functional equations for Z(s) and also for the three-dimensional sum∑∑∑′ 1

(l2+m2+n2)s
.

2.2. Hardy’s argument

Here we take up Hardy’s idea of using the K-Bessel function, which is under our general
spectrum in this paper, and prove the functional equation (2.4) by completing his argument.

Proof of functional equation (2.4) in terms of Hardy. We slightly change Hardy’s notation,
and write Q = Q(m, n) = am2 + 2bmn + cn2 instead of his αm2 + 2βmn + γ n2. Define

ζQ(s) =
∑
m,n

′ 1

Q(m, n)s
σ > 1. (2.6)
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We use Hardy’s normalized K-Bessel function ψz(x) defined for x > 0, z ∈ C by ([10])

ψz(x) = x
z+1

2 Kz+ 1
2
(2x) =

∫ ∞

0
exp(−t2 − (x2/t2))tz dt (2.7)

(cf (1.10)), ‘normalized’ in the sense that

lim
x→0+

ψz(x) = 1

2
�

(
z + 1

2

)
. (2.8)

We use the Heaviside integral ([10, (30)], cf (1.12))∫ ∞

0
ψz(x)xs−1 dx = 1

4
�
( s

2

)
�

(
z + s + 1

2

)
(2.9)

valid for σ > 0 (Re z � −1). We also use the function ([10, (25)])

χz(u) =
∑
m,n

ψz(π
√

Qu)

=
∑
m,n

ψz

(
π

√
am2 + 2bmn + cn2u

)
(2.10)

and the theta-series

ϑ(z)Q =
∑
m,n

e−Qπz (2.11)

and recall its transformation formula ([7], [10, (69)])

ϑ(z)Q = 1

z
√|d|ϑ

(
1

z

)
Q−1

(2.12)

with the inverse Q−1 defined by (2.5).
We note the consequence of (2.10) and (2.11)

χz

( κ

π

)
=
∑
m,n

ψz(κ
√

Q) =
∫ ∞

0
e−t2

t zϑ

(
κ2

πt2

)
Q

dt. (2.13)

Now, noting that the term corresponding to (0, 0) is missing in the defining sum of ζQ(s),
we have, instead of [10, (76)],

1

4
�(s)�

(
s +

z + 1

2

)
π−2sζQ(s) =

∫ ∞

0

{
χz(u) − 1

2
�

(
z + 1

2

)}
u2s−1 du σ > 1.

(2.14)

Then we follow Riemann’s second proof of the functional equation for the Riemann
zeta-function and split the range of integration into two—(0, 1) and (1,∞)—and note that the
integral extended over 1 < u represents an analytic function of s, all over C.

To transform
∫ 1

0 = ∫ 1
0

[
χz(u) − 1

2�
(

z+1
2

)]
u2s−1 du we substitute (2.13) with κ = πu.

Then we get ∫ 1

0
=
∫ 1

0
χz(u)u2s−1 du − 1

2
�

(
z + 1

2

)∫ 1

0
u2s−1 du

=
∫ 1

0
u2s−1 du

∫ ∞

0
e−t2

t zϑ

(
πu2

t2

)
Q

dt − 1

2
�

(
z + 1

2

)
1

2s

=
∫ ∞

0
e−t2

t z
∫ 1

0
ϑ

(
πu2

t2

)
Q

u2s−1 du dt − 1

4s
�

(
z + 1

2

)
(2.15)

with the interchange of the order of integration being justified by absolute convergence.
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Applying the transformation formula (2.12), we rewrite the inner integral on the right-hand
side of (2.15) as∫ 1

0

t2

πu2
√|d|ϑ

(
t2

πu2

)
Q−1

u2s−1 du

= t2

π
√|d|

{∫ 1

0

(
ϑ

(
t2

πu2

)
Q−1

− 1

)
u2s−3 du +

1

2s − 2

}
. (2.16)

Substituting (2.16) into (2.15), we see that∫ 1

0

{
χz(u) − 1

2
�

(
z + 1

2

)}
u2s−1 du

= 1

π
√|d|

∫ ∞

0
e−t2

t z+2 dt

∫ 1

0

(
ϑ

(
t2

πu2

)
Q−1

− 1

)
u2s−3 du

+
1

4π
√|d|

1

s − 1
�

(
z + 3

2

)
− 1

4s
�

(
z + 1

2

)
. (2.17)

Finally, the change of variables u into u−1 in the inner integral on the right-hand side of
(2.17) gives ∫ 1

0

(
ϑ

(
t2

πu2

)
Q−1

− 1

)
u2s−3 du =

∫ ∞

1

(
ϑ

(
t2u2

π

)
Q−1

− 1

)
u−2s+1 du

which is absolutely convergent over all the s-plane, and therefore, by changing the order of
integration, we conclude that∫ 1

0

{
χz(u) − 1

2
�

(
z + 1

2

)}
u2s−1 du

= 1

π
√|d|

∫ ∞

1

∫ ∞

0
e−t2

t z+2

(
ϑ

(
t2u2

π

)
Q−1

− 1

)
u−2s+1 dt du

+
�
(

z+3
2

)
4π

√|d|
1

s − 1
− �

(
z+1

2

)
4

1

s
(2.18)

valid for all s ∈ C.
Now we suppose Re s < 0, and apply a similar argument to the integral over (1,∞).

First, replace u by 1/u.
Corresponding to (2.15), we have∫ ∞

1

{
χz(u) − 1

2
�

(
s + 1

2

)}
u2s−1 du

=
∫ ∞

0
e−t2

t z dt

∫ ∞

1
ϑ

(
πu2

t2

)
Q

u2s−1 du +
�
(

z+1
2

)
4s

. (2.19)

In place of (2.16) we have∫ ∞

1
ϑ

(
πu2

t2

)
Q

u2s−1 du = t2

π
√|d|

{∫ ∞

1

(
ϑ

(
t2

πu2

)
Q−1

− 1

)
u2s−3 du − 1

2s − 2

}

(2.20)
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whence as a substitute of (2.17) we have∫ ∞

1

[
χz(u) − 1

2
�

(
s + 1

2

)]
u2s−1 du

= 1

π
√|d|

∫ ∞

0
e−t2

t z+2
∫ 1

0

(
ϑ

(
t2u2

π

)
Q−1

− 1

)
u1−2s dt du

− �
(

s+3
2

)
4π

√|d|
1

s − 1
+

�
(

z+1
2

)
4

1

s
. (2.21)

And finally we obtain the counterpart of (2.18)∫ ∞

1

{
χz(u) − 1

2
�

(
s + 1

2

)}
u2s−1 du

= 1

π
√|d|

∫ 1

0
u−2s+1

∫ ∞

0
e−t2

t z+2

(
ϑ

(
t2u2

π

)
Q−1

− 1

)
dt du

− �
(

s+3
2

)
4π

√|d|
1

s − 1
+

�
(

z+1
2

)
4

1

s
. (2.22)

Substituting (2.18) and (2.22) into (2.14) gives

1

4
�(s)�

(
s +

z + 1

2

)
π−2sζQ(s)

= 1

π
√|d|

∫ ∞

0
u−2s+1

∫ ∞

0
e−t2

t z+2

(
ϑ

(
t2u2

π

)
Q−1

− 1

)
dt du (2.23)

whereby we note that the range of integral with respect to u is 0 < u < ∞.
Again, a change of variable u to u−1 leads to

1

4
�(s)�

(
s +

z + 1

2

)
π−2sζQ(s)

= 1

π
√|d|

∫ ∞

0
u2s−3

∫ ∞

0
e−t2

t z+2

(
ϑ

(
t2

πu2

)
Q−1

− 1

)
dt du. (2.24)

Now the inner integral on the right-hand side can be evaluated as in Hardy ([10, p 372],
the last two lines)

∫ ∞

0
e−t2

t z+2

(
ϑ

(
t2

πu2

)
Q−1

− 1

)
dt = 1

2
�

(
z + 3

2

)∑
m,n

′ (
1 +

Q−1

√|d|u2

)− 1
2 (z+3)

which we substitute into (2.24) to obtain

1

4
�(s)�

(
s +

z + 1

2

)
π−2sζQ(s)

= �
(

z+3
2

)
2π

√|d|
∑
m,n

′ ∫ ∞

0

(
1 +

cm2 − 2bmn + an2

√|d|u2

)− 1
2 (z+3)

u2s−3 du. (2.25)
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Recalling the formula ([10, (77)])

∑
m·n

′ ∫ ∞

0

(
1 +

cm2 − 2bmn + an2

√|d|u2

)− 1
2 (z+3)

u2s−3 du

= 1

2

�(1 − s)�
(
s + z+1

2

)
�
(

z+3
2

) ∑
m,n

′ ( √|d|
cm2 − 2bmn + an2

)1−s

(2.26)

we finally arrive at the formula

1

4
�(s)�

(
s +

z + 1

2

)
π−2sζQ(s) = 1

4π
�(1 − s)�

(
s +

z + 1

2

)
|d| 1

2 −sζQ−1(1 − s). (2.27)

The functional equation (2.4) is nothing but formula (2.27) expressed in more symmetric form.
This completes the proof of (2.4).

We remark that formula (2.26) depends on the inverse Mellin–Barnes integral (cf section 1
and (1.13)). �

3. Bessel series expressions for Madelung constants of the NaCl and CsCl lattices

Our purpose is to prove the following two theorems which exhibit the duality between NaCl
and CsCl structures.

Theorem 2. For the NaCl lattice zeta-function ϕκ(s) defined by (1.1), we have

π−s�(s) (ϕκ+1(s) − ϕκ(s)) = 2κ+2
∑
k∈N

κ

|k − 1/2|s− κ
2

∑
m∈N

(−1)mm
κ
2 −sKs− κ

2
(2πm|k − 1/2|)

(3.1)

for κ � 1.

Corollary 1. Let ακ(NaCl) be a κ-dimensional Madelung constant for NaCl defined by
ακ(NaCl) = −ϕκ(1/2). Then we have

(i) α1(NaCl) = 2 log 2.
(ii) α2(NaCl) = 4(1 − √

2)ζ (1/2) L (1/2, χ4)

= 8
∑

k,m∈N

(−1)m−1K0(πm(2k − 1)) + 2 log 2

= 8
∑
m∈N

K0(πm)σ0(m) − 24
∑
m∈N

K0(2πm)σ0(m)

+ 16
∑
m∈N

K0(4πm)σ0(m) + 2 log 2

where in the first equality, L(s, χ4) is the Dirichlet L-function for χ4 defined in section 1
and in the second and third equalities, K0 stands for the modified Bessel functions defined
by (1.10) and (1.11), and σ0(n) is the number of divisors of n, i.e., σ0(n) = ∑

d|n 1.

(iii) α3(NaCl) = α2(NaCl) + 16
∑

k1,k2∈N

1√
(2k1 − 1)2 + (2k2 − 1)2

× 1

exp
(
π
√

(2k1 − 1)2 + (2k2 − 1)2
)

+ 1
.
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For the normalized CsCl crystal lattice with Cs+ at the origin, the Cs+ ions are at
m = (l,m, n) ∈ Z3 while the Cl− ions are at m + 1/2 with m ∈ Z3. Hence the CsCl
lattice zeta-function M3(s), up to a magnification factor, is given by∑
m∈Z3

′ −1((
2√
3
l
)2

+
(

2√
3
m
)2

+
(

2√
3
n
)2)s +

∑
m∈Z3

1((
2√
3

(
l + 1

2

))2
+
(

2√
3

(
m + 1

2

))2
+
(

2√
3

(
n + 1

2

))2)s
which is precisely (1.8)(

3

4

)s

ψ3(s) −
(

3

4

)s

Z3(s) (3.2)

where

ψ3(s) =
∑
m∈Z3

1

|m + 1/2|2s
and Z3(s) =

∑
m∈Z3

′ 1

|m|2s
.

In view of (3.2), we introduce the κ-dimensional CsCl lattice zeta-function ξκ(s) and
Madelung constant through

ξκ(s) = Zκ(s) − ψκ(s) (3.3)

and

ακ(CsCl) = −
√

κ

2
ξκ

(
1

2

)
(3.4)

where ψκ(s) is defined by (1.7) and

Zκ(s) = Z

∣∣∣∣0 · · · 0

0 · · · 0

∣∣∣∣ (2s)E =
∑
m∈Z

κ

′ 1

|m|2s
(3.5)

is the Epstein zeta-function for the identity matrix E studied extensively in part I.

Theorem 3. The CsCl lattice zeta-function ξκ(s) defined by (3.3) satisfies

π−s�(s)ξκ+1(s) = 4
∑
m∈N

∑
k∈Z

κ

′
m

κ
2 −s |k|s− κ

2 Ks− κ
2
(2πm|k|)

− 4
∑
m∈N

∑
k∈Z

κ

′ (
m − 1

2

) κ
2 −s

(−1)s(k)|k|s− κ
2 Ks− κ

2

(
2π

(
m − 1

2

)
|k|
)

+ π−s�(s)Zκ(s) + π−s+ κ
2 �

(
s − κ

2

)
ξ1

(
s − κ

2

)
,

where |k| =
√

k2
1 + · · · + k2

κ and s(k) = k1 + · · · + kκ for k = (k1, . . . , kκ).

Corollary 2. The Madelung constants α1(CsCl) and α2(CsCl) are the same as those of NaCl
respectively, while for the three-dimensional CsCl lattice, it is given by

α3(CsCl) = −
√

3

2
ξ3

(
1

2

)

= −
√

3
∑

(k1,k2)�=(0,0)

1√
k2

1 + k2
2

1

exp
(
2π

√
k2

1 + k2
2

) − 1

+ 2
√

3
∑

(k1,k2)�=(0,0)

(−1)k1+k2√
k2

1 + k2
2

1

sinh
(
π

√
k2

1 + k2
2

) +

√
3(

√
2 + 1)

2
α2(CsCl) −

√
3π

8
.
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We note that the equalities αj (CsCl) = αj (NaCl) (j = 1, 2) are also observed by the
structure of crystals of CsCl and NaCl.

To prove these theorems we recall Hecke’s theory of functional equations developed by
Berndt [1] and by us [13, 14].

Definition. The two Dirichlet series ϕ(s) and ψ(s) formed from

0 < λ1 < λ2 < · · · 0 < µ1 < µ2 < · · ·
and {an}, {bn},

ϕ(s) =
∞∑

n=1

an

λs
n

ψ(s) =
∞∑

n=1

bn

µs
n

,

absolutely convergent in some half-plane, are said to satisfy Hecke’s functional equation
(A > 0, c ∈ C constants)

A−s�(s)ϕ(s) = cA−(δ−s)�(δ − s)ψ(δ − s) (3.6)

if there exists a function χ(s) = χA(s) holomorphic outside a compact set S, convex in any
finite strip, coinciding with A−s�(s)ϕ(s) and cA−(δ−s)�(δ − s)ψ(δ − s) in the respective
region of absolute convergence.

Define the residual function P(x) by

P(x) = PA(x) = 1

2π i

∫
C
χA(s)x−s ds (3.7)

where C is a closed curve or curves enclosing S.
Then we have the following lemma.

Lemma 2 ([1, 14]). The Hurwitz-type Dirichlet series ϕ(s, α) associated with ϕ(s)

ϕ(s, α) =
∞∑

n=1

an

(λn + α)s
(3.8)

admits the representation

A−s�(s)ϕ(s, α) = 2cα
δ−s

2

∞∑
n=1

bnµ
s−δ

2
n Ks−δ(2A

√
αµn) +

∫ ∞

0
e−αAuus−1P(u) du, (3.9)

for σ > max
{
δ − 1

2 ,−1
}
, s �= 0.

Conversely, if ϕ(s, α) satisfies (3.9), then (3.6) holds.

We apply this with the following designations: {λn} is the sequence of all possible
values of |m|2 = m2

1 + · · · + m2
κ arranged in increasing order and an = ∑

|m|2=λn
(−1)s(m) and

similarly, {µn} is the sequence of all possible values of |m + 1/2|2 arranged in increasing order
and bn = ∑

|m+1/2|2=µn
1.

Then the lattice zeta-functions

ϕκ(s) =
∞∑

n=1

an

λs
n

=
∑
m∈Z

κ

′ (−1)s(m)

|m|2s

and

ψκ(s) =
∞∑

n=1

bn

µs
n

=
∑
m∈Z

κ

1

|m + 1/2|2s
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satisfy the Hecke functional equation (1.6); thus A = π, c = 1, δ = κ/2 (recall (1.5) and
(1.7)), as a special case of Epstein’s result [7]. From the modular relation (for which we refer
to [13, 14]), we may prove that the residual function is

P(x) = PA(x) = −1. (3.10)

Therefore its Borel transform
∫∞

0 e−απuus−1P(u) du is −�(s)(απ)−s .
Hence lemma 2 reads

π−s�(s)ϕκ(s, α) = 2α
κ/2−s

2

∑
k∈Z

κ

|k + 1/2|s− κ
2 Ks− κ

2
(2π

√
α|k + 1/2|) − �(s)

(απ)s
. (3.11)

We are now in a position to establish the following lemma.

Lemma 3. For the NaCl lattice zeta-function ϕκ(s) we have

(i) ϕ1(s) = (21−2s − 1)Z1(s) = 2(21−2s − 1)ζ(2s),

(ii) ϕ2(s) = (21−s − 1)Z2(s) = 4(21−s − 1)ζ(s)L(s, χ4),

(iii) ϕκ+1(s) − ϕκ(s) = 2
∑
m∈N

(−1)mϕκ(s,m
2) + ϕ1(s).

Proof. (i) and (ii) can be proved directly from the definition and the standard decomposition
of the Dedekind zeta-function of the Gaussian field Q(i) into the product of the Riemann
zeta-function and Dirichlet L-function going back to Gauss (cf part I, (3.4)).

To prove (iii) we separate the sum over (m,mκ+1) = (m1, . . . , mκ,mκ+1) into three parts:
mκ+1 �= 0 and m �= 0;mκ+1 �= 0 and m = 0; and m �= 0 and mκ+1 = 0. Then

ϕκ+1(s) =
∑

0�=mκ+1∈Z

(−1)mκ+1
∑

0 �=m∈Z
κ

(−1)s(m)(|m|2 + m2
κ+1

)s +
∑

0�=mκ+1∈Z

(−1)mκ+1

m2s
κ+1

+ ϕκ(s)

which amounts to (iii) on account of (3.8), and the proof is complete. �

Proof of theorem 2. Multiplying both sides of lemma 3 (iii) by π−s�(s) and applying (3.11)
to each ϕκ(s,m

2), we have the assertion of theorem 2. �

Proof of corollary 1. (i) follows by taking the limit as s → 1
2 of lemma 3 (i).

The first equality in (ii) is a consequence of lemma 3 (ii).
The second equality is a consequence of theorem 2 with κ = 1, s = 1

2 and (i).
To prove the third equality, we introduce the divisor function

σ ∗
0 (n) =

∑
d|n

(−1)d . (3.12)

We may easily prove that

σ ∗
0 (n) = −σ0(n) +

{
0 n odd
2σ0(

n
2 ) n even.

(3.13)

Noting that the sum in the second equality can be expressed as∑
k,m

(−1)m−1K0(πmk) −
∑
k,m

(−1)m−1K0(2πmk)

or

−
∑
m∈N

K0(πm)σ ∗
0 (m) +

∑
m∈N

K0(2πm)σ ∗
0 (m)

we may apply (3.13) to conclude the third equality.
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Finally, we turn to the proof of (iii). Recalling that K 1
2
(z) =

√
π
2z

e−z (from (1.14)), we

deduce from (3.1) with s = 1
2 , κ = 2

ϕ3

(
1

2

)
− ϕ2

(
1

2

)
= 23

∑
k1,k2∈N

1√(
k1 − 1

2

)2
+
(
k2 − 1

2

)2

×
∞∑

m=1

(−1)m exp
( − 2π

√(
k1 − 1

2

)2
+
(
k2 − 1

2

)2)m
whose inner sum is the geometric series with the sum

− 1

exp
(
2π

√(
k1 − 1

2

)2
+
(
k2 − 1

2

)2)
+ 1

and (iii) follows. (Compare [11].) �

Lemma 4. For the CsCl lattice zeta-function ξκ(s) and Zκ(s), we have

(i) ξ1(s) = 22sϕ1(s),

(ii) ξ2(s) = 1

21−s − 1
ϕ2(s) − π2s−1�(1 − s)

�(s)
ϕ2(1 − s)

(iii) Zκ+1(s) − Zκ(s) =
∑

0�=m∈Z

Zκ(s,m
2) + Z1(s).

Proof. (i) is obtained from ψ1(s) = (22s − 1)Z1(s) and lemma 3(i). (ii) is a consequence
of the functional equation (1.6) and lemma 3(ii). For (iii), we separate the defining sum for
Zκ+1(s) as in the proof of lemma 3(iii) and obtain the equality immediately. �

Proof of theorem 3. The proof goes along the same lines as that of theorem 2.
First, we recall from (1.7) that

ψκ+1(s) =
∑

mκ+1∈Z

∑
m∈Z

κ

1

(|m + 1/2|2 + (mκ+1 + 1/2)2)s

=
∑
m∈Z

ψκ

(
s,

(
m +

1

2

)2
)

(3.14)

where we wrote ψκ+1(s) = Z
∣∣1/2

0

∣∣∣(2s)E , and ψκ(s, α) is the Hurwitz-type Dirichlet series

associated with ψκ(s) (cf (3.8)). �

Now we view (1.6) in the reverse way, i.e. ϕκ

(
κ
2 − s

)
as the mirror image. Using the

modular relation, we may prove that the residual function is given by x−κ/2, and therefore its
Borel transform is

�
(
s − κ

2

)
(απ)s−

κ
2

.

Thus, as a counterpart of (3.11), we deduce from lemma 2 that

π−s�(s)ψκ(s, α) = 2α
κ/2−s

2

∑
k∈Z

κ

′
(−1)s(k)|k|s− κ

2 Ks− κ
2
(2π

√
α|k|) + �

(
s − κ

2

)
(απ)−s+ κ

2 .

(3.15)
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Substituting (3.15) with α = (m + 1/2)2 into (3.14), we conclude that

π−s�(s)ψκ+1(s)

= 2
∑
m∈Z

∣∣∣∣m +
1

2

∣∣∣∣
κ
2 −s ∑

k∈Z
κ

′
(−1)s(k)|k|s− κ

2 Ks− κ
2

(
2π

∣∣∣∣m +
1

2

∣∣∣∣ |k|
)

+ π−s+ κ
2 �

(
s − κ

2

)
ψ1

(
s − κ

2

)

= 4
∑
m∈N

(
m − 1

2

) κ
2 −s ∑

k∈Z
κ

′
(−1)s(k)|k|s− κ

2 Ks− κ
2

(
2π

(
m − 1

2

)
|k|
)

+ π−s+ κ
2 �

(
s − κ

2

)
ψ1

(
s − κ

2

)
(3.16)

which is valid for σ > κ
2 in the first place.

It is Zκ(s) = Z
∣∣0 · · · 0
0 · · · 0

∣∣∣(2s)E that satisfies the recurrence relation, which however is a
special case of theorem 2 in part I. Thus we shall first indicate the proof based on lemma 2.

The functional equation (1.6) remains the same, with Zκ(s) itself as the mirror image,
and the residual function can be computed to be x− κ

2 − 1.

Corresponding to (3.11) and (3.15), we have

π−s�(s)Zκ(s, α) = 2α
κ/2−s

2

∑
k∈Z

κ

′ |k|s− κ
2 Ks− κ

2
(2π

√
α|k|) +

�(s − κ
2 )

(απ)s−
κ
2

− �(s)

(απ)s
.

Hence from (iii) of lemma 4,

π−s�(s){Zκ+1(s) − Zκ(s)} = 4
∑
m∈N

∑
k∈Z

κ

′
m

κ
2 −s |k|s− κ

2 Ks− κ
2
(2πm|k|)

+ π−s+ κ
2 �

(
s − κ

2

)
Z1

(
s − κ

2

)
(3.17)

which coincides with the special case of (2.17a) of part I (with Q = E) after slight
modifications.

Substituting (3.16) and (3.17) into (3.3), we obtain the formula corresponding to (3.1) for
the CsCl lattice zeta-function

π−s�(s)ξκ+1(s) = 4
∑
m∈N

∑
k∈Z

κ

′
m

κ
2 −s |k|s− κ

2 Ks− κ
2
(2πm|k|)

− 4
∑
m∈N

∑
k∈Z

κ

′ (
m − 1

2

) κ
2 −s

(−1)s(k)|k|s− κ
2 Ks− κ

2

(
2π

(
m − 1

2

)
|k|
)

+ π−s�(s)Zκ(s) + π−s+ κ
2 �

(
s − κ

2

)
ξ1

(
s − κ

2

)
(3.18)

which is the assertion of theorem 3.

Proof of corollary 2. The assertions for α1(CsCl) and α2(CsCl) are obtained from lemma 4.
For α3(CsCl), it is enough to prove

ξ1
(− 1

2

) = − 1
8

which is easily seen from the equality ψ1(s) = (22s − 1)Z1(s). �
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Corollary 3. The Euler constant γ is expressed by

γ = −4
∑

k,m∈N

K0(2πmk) + 4(1 +
√

2)
∑

k,m∈N

(−1)kK0(π(2m − 1)k) + log 2π −
√

2 log 2.

Proof. From theorem 3, we have

ξ2

(
1

2

)
= 8

∑
k,m∈N

K0(2πmk) − 8
∑

k,m∈N

(−1)kK0(2π(2m − 1)k)

+ lim
s→ 1

2

{
π−s�(s)Z1(s) + π−s+ 1

2 �

(
s − 1

2

)
ξ1

(
s − 1

2

)}

= 8
∑

k,m∈N

K0(2πmk) − 8
∑

k,m∈N

(−1)kK0(2π(2m − 1)k) + 2γ − 2 log 2π.

This gives an expression for α2(CsCl) by the K-Bessel series. Combining this expression and
the second equality of corollary 2 (ii), we get the assertion of corollary 3. �
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